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Prediction of strength of recrystallized

siliconcarbide from pore size measurement

Part I The bimodality of the distribution
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The bending strength values of more than 100 specimens of a recrystallized siliconcarbide
ceramic (RSiC) show a distinct bimodal Weibull distribution. By measuring the number and
size of surface pores, calculating the distribution of volume pores and choosing appropriate
shape factors for the pores in the volume and for those close to the surface, the two modes
of the Weibull distribution of the strength values can be predicted. C© 2000 Kluwer
Academic Publishers

1. Introduction
To describe the fracture behaviour of brittle materials,
the Weibull distribution has been widely used [1–3].
It is based on the “weakest-link hypothesis”, which
means that the most serious flaw controls the strength. If
the number of the large pores, i.e. the ones, which are
responsible for failure, is distributed according to an
inverse power law, the strength values are distributed
according to the Weibull distribution [2, 3]. Thus the
statistical distribution of the flaw dimensions is closely
connected to the fracture stresses obtained by mechan-
ical tests. This relationship has been used to predict
the distribution of flaw sizes and positions from differ-
ent fracture experiments [4–8]. Reversely, a number of
authors tried to predict fracture stresses from flaw pop-
ulations [9–15], which would offer a non-destructive
tool to measure mechanical properties. The application
to ceramic materials faces two main problems [13]:
Firstly, the defects in ceramics are usually small and
secondly, the relation between the fracture strength and
the size and geometry of the defect can be very complex.
Thus, an experimental verification of the relation of the
structure to the strength needs extensive fracture testing
and a considerable fractographic effort. The difficulty is
to obtain a reliable distribution in particular of the large
pores. Scattering methods [16] or transmission electron
microscopy give only information on the small pores
[14], whereas mercury porosimetry [17] and impedance
spectroscopy [18] cannot resolve the distribution with
a sufficient precision. Though there are some new de-
velopments like magnetic resonance imaging [19, 20]
or thermal nondestructive testing [21], the most widely
used method to determine flaw distributions is digi-
tal image analysis in connection with scanning elec-
tron microscopy [22], X-ray imaging [23, 24], ultra-

sound microscopy [25–28] or optical methods (light
microscopy [13, 24, 29] and transmission optical mi-
croscopy [14, 30]).

The reliability of the predictions of the mechanical
properties from the measurement of pore size distri-
butions is furthermore complicated, if a material does
not perfectly obey the Weibull statistics. In particular,
for ceramic fibres, this behaviour had been observed
and attributed to the existence of different flaw pop-
ulations, e.g. surface and volume flaws [31–33]. To
improve the description of the experimental results,
different ways were proposed, e.g. a modification of
the two-parametric Weibull distribution [34], a bimodal
lognormal distribution [35], generalized distributions
assuming a Poisson flaw model without presuming a
particular functional form [36], as well as bi- and mul-
timodal Weibull distributions [32, 37, 38]. For ceram-
ics, the bimodality due to different flaw populations has
been more a theme of theoretical considerations than
of experimental results [2, 3, 37]. The reason is proba-
bly the great experimental effort and the cost involved.
The statistical scatter of the fracture strength of brittle
materials requires a large number of specimens for
statements based on reliable data. Therefore most pa-
pers dealt with the numerical simulation of experiments
and investigated for example the precision of different
evaluation procedures [39–43]. To cope with the sta-
tistical scatter, the strength values were determined by
more than hundred tests and then compared to predic-
tions made by non-destructive measurement of the pore
size distribution determined by the measurement of an
area of 16000 square millimeters. The large number of
fracture strength data showed a distinct bimodality. The
large area, from which the pore size distribution was
measured, could be used to explain this bimodality by
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being a consequence of the different shape factors of the
pores in the volume and the pores close to the surface.
The bimodality is important for practical reasons: if the
size of the tested specimen does not coincide with the
one of the future construction part, it is possible that the
parameters of the “wrong” distribution are measured.
For example, if the tested specimens are small, they
could fail due to volume flaws, whereas large construc-
tion parts could fail due to surface flaws with much
lower Weibull parameters. Thus, this work focuses in
particular on the bimodality. The limitations by a dis-
tribution being not exactly power-law distributed or by
a limited measured area (limited number of pores) are
discussed separately [44].

2. Materials and methods
The material investigated was a recrystallized silicon-
carbide. This material has a high strength in relation to
its density and is nearly free of second phases (sintering
aids) except for a rest of free silicon (<1 wt.%). Thus
it is highly creep resistant. A high thermal conductivity
and a low thermal coefficient of expansion allow this
material to be applied for kiln furniture in the ceramic
industry. A short description of the material may be
found in [43, 45], a precise description of processing
and texture in [46].

More than hundred specimens, which were tested in
four-point bending in a previous work [43] were ground
and polished to a final mesh of 1µm. Each of these
specimens was investigated in the optical microscope.
Fig. 1 shows a micrograph of the material, which repre-
sents an area of 4.44 square millimeters. As it is clearly
visible, the material is highly porous. From a technical
point of view this has the advantage that the density
is relatively low and thus the material contributes to
energy saving when used as kiln furniture [47]. With
respect to our investigation of the relationship between

Figure 1 Micrograph of the porous RSiC. The bar equals 500 microns.

pore size distribution and strength, this high porosity
has the advantage that the dimensions of a large num-
ber of pores could be collected easily. From each of
the mechanically tested specimens 25 to 30 of such mi-
crographs were taken and subsequently evaluated by
digital image processing. The maximum and the mini-
mum pore size, the maximum and minimum pore size
in the specific directions of the long axis of the speci-
men and perpendicular to this axis as well as area and
perimeter were measured.

3. Theoretical considerations
If linear elastic fracture mechanics (LEFM) is presumed
and the frequency distribution of pore sizeg(a) de-
creases with an inverse power law with an exponentr
and a scaling pore sizeasc, the fracture probabilities
Pf are Weibull distributed with an exponentm and a
scaling parameterσ0 [1–3]:

g(a) = g(asc)

(
a

asc

)−r

→ Pf = 1− exp

(
−
(
σ

σ0

)m
)

(1)

By this, the parameters of the pores (g(a0), r ) and the
ones of the strength (σ0,m) are related by [2, 3]

m= 2(r − 1) and

σ0 =
(

m

(2ascg(asc)V0)

)1/m KIc(
Y(πasc)1/2

) , (2)

whereV0 is the effective tested volume,KIc the critical
fracture toughness andY the shape factor.

There are the following difficulties:

• Firstly, fracture toughnessKIc has to be known.
In this work it was measured by an independent
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procedure (single edge notched beam, notched by
a diamond blade with a thickness of 50 microns,
resulting in a notch radius of about 30 microns).
Five tests were performed according to the German
prestandard DIN 51109. The fracture toughness
turned out to be 2.05± 0.1 MPa

√
m. A compari-

son of this test method to others could be found in
literature with data obtained by a round robin test
for five different brittle materials [48].
• Secondly, the shape factorY has to be determined.
• Thirdly, the volume frequency distribution of the

pore sizes has to be known. In the following the
way to calculate it from the measured surface dis-
tribution will be investigated. The consequences
due to a limited number of pores (i.e. a limited
area measured) and a distribution, which does not
perfectly obey a power-law, were investigated sep-
arately [44].

To calculate the volume distribution from the sur-
face distribution determined by the microscope, in a
first approximation the shape of the pores is assumed
to be spherical and the dependence of the number on
the size should be distributed according to a power law,
Equation 1. These assumptions allow an analytical ex-
pression to relate the number of pores in an unit volume
to the one in an unit area instead of numerical proce-
dures, e.g. the Schwartz-Saltykov diameter method [13]
or the 3D-fibre orientation reconstruction from image
analysis [49].

The probability to find a pore of a certain size, de-
noted bya, by a plane cut out of a certain volume is
a/L (Fig. 2). Thus the total number of pores in a surface
S, observed in an interval [a, a+ da], is related to the
number of pores in a volumeV by

N tot,S
in[a+ da] S= N tot,V

in[a+da]V
a

L
= N tot,V

in[a+ da]aS (3)

By integration over all possible pore sizes a the dis-
tributions of surface and volume pores,gs andgv, are
related by ∫ ∞

0
db gs(b) =

∫ ∞
0

da agv(a) (4)

Figure 2 The probability to find a pore in a volume by an arbitrary plane
cut isa/L.

Figure 3 Dependence of a (diameter of spherical volume pores) to the
observed lengthb (diameter of surface pores), if a plane cut is performed.

With the assumption that both, the surface and the vol-
ume pores, obey an inverse power law (Equation 1),
and by use of the following identity (see Fig. 3),

b = 2
√

(a/2)2− h2 and

1= 2

a

∫ a/2

0
dh =

∫ a

0
db

b

a
√

a2− b2
(5)

the relation of the surface and the volume pores can be
calculated:∫ ∞

0
db gs(b) =

∫ ∞
0

da agv(a)

=
∫ ∞

0
da agv(a)

∫ a

0
db

b

a
√

a2− b2

=
∫ ∞

0
da agv(a)

∫ ∞
0

db
b2(a− b)√

a2− b2
, (6)

where2 is the Heaviside step-function. Performing a
change of the integrations and inserting the power law
(Equation 1) into Equation 6 leads to∫ ∞
0

db gs(b) =
∫ ∞

0
db
∫ ∞

0
da gv(a)

b√
a2− b2

(7)

With the substitutionb=ax the integration can be an-
alytically performed, with the indices s and v denoting
the parameters of the surface and volume distribution
of pores, respectively:

rv = rs+ 1

gv(asc) = gs(asc)

(ascG)
with

G =
√
π

2

0(rs/2+ 1/2)

0(rs/2+ 1)
(8)

where0 is the Gamma-function. From this equation
and Equation 2 the parameters of the Weibull dis-
tributed strength values follow immediately. Because
a spherical shape of the pores was assumed, this model
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is a certain simplification. The calculated results, how-
ever, will confirm that despite these approximations rea-
sonable predictions about the mechanical strength are
obtained.

Now, if the pores are homogenously distributed, it is
obvious that a part of the pores is located in the volume
and a part close to the surface. They both are accom-
panied by different shape factors. It is thus convenient
to describe the mechanical fracture behaviour by the
existence of a single flaw population with two different
shape factors, the one for the volume poresYv and the
other for the surface poresYs. In a first approximation,
the shape factor of an elliptical pore with axesa0,b0 in
an infinite body in tension is given by [50]:

Yv(θ ) = b0

a0E(k)

(
sin2(θ )+

(
a0

b0

)2

cos2(θ )

)0.25

with

k =
√

1−
(

b0

a0

)2

(9)

for a0> b0, E(k) being the complete elliptic integral
of the second kind. The subscript zero characterizes
the long axis of an elliptical pore, which is related to
the pore diametera measured by the microscope by
a0=a/2. As the pores are arbitrarily oriented, numer-
ical integration of the shape factor with respect to its
angle and inserting the ratio maximal to minimal pore
length, which was obtained by the pore size measure-
ments as the mean of all measured pores,b0/a0= b/a=
0.63, gives:

Yv = 2

π

∫ π/2

0
dθ Yv(θ ) = 0.555 (10)

The shape factor for the surface pores is given by the
area of the crack on the plane of maximal stress [51],
which is, for an elliptical crack, the area= a0 b0 π :

Ys = 0.65
√

a−1
0

√
area= 0.771 (11)

The amount of specimens fracturing from surface de-
fectsβ could be estimated by the relative amount of
critical surface pores. Each surface pore has an effec-
tive lengthaeff, which is obtained by the mean of the
length. This corrects that not each pore is touching the
surface (if this is the case, the effective length would
equal to 2a0), but may be partly cut by the surface:

aeff = 1

a

∫ a

0
dx x = 1

2
a (12)

Then the relative amount of surface pores, which are
critical, is obtained similarly to Fig. 1 by the probabil-
ity of a pore being located on the tensile surface, which
is Ps=a/W (W being the width of the specimen). In-
serting the scale parameter for the surface pores and
their shape factor, a mean critical length is estimated
from Griffith theory:

ac =
(

KIc

σ0sYs
√
π

)2

(13)

The amount of fractures from surface poresβ is then
calculated by the relative amount of critical surface
pores from all critical pores (the factor two in the lower
integration limit arises, becauseac is only the long axis
of the ellipse, the total length of the pore being twice
that value):

β =

∫ ∞
2ac

da
aeff

W
g(a)∫ ∞

2ac

da g(a)
=

∫ ∞
2ac

da
a

2W
g(a)∫ ∞

2ac

da g(a)
(14)

4. Results and discussion
If a specimen contains different flaw populations, they
all contribute to the failure probability [2, 32, 37]:

Pf = 1− exp

(
−
(
σ

σ01

)m1

−
(
σ

σ02

)m2
)

(15)

This equation is valid, if the distributions are indepen-
dent, continuous and both equally frequent and present
in all specimens. In the case of a sufficiently small test
volume this is not generally valid: If for example one
distribution has a low scale parameter, but the number
of the defects is small, only a small number of speci-
mens will fail due to this distribution. One possibility is
to correct Equation 15 by a parameter, which describes

Figure 4 Fracture strength values (circles). Solid line: Fit by the addi-
tive bimodal Weibull distribution (Equation 16), dashed line: fit by the
multiplicative bimodal model (Equation 15). For low strength values,
the fit results differ, for high values they coincide.
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the relative number of defects of both distributions, the
other is to use an additive Weibull equation [38]:

Pf =
[

1−(1− α) exp

(
−
(
σ

σ01

)m1
)

+ α exp

(
−
(
σ

σ02

)m2
)]

(16)

Two parameters describe each of the respective Weibull
distributions,σ01, m1, σ02, m2, and one parameterα the
effectiveness of each distribution, i.e. which of the dis-

Figure 5 Specimen surfaces with fracture lines after test (between arrows). The bar equals 1 mm. a) huge surface pore could be identified as fracture
origin (upper picture), b) surface and volume pores could not be distinguished as fracture origin (lower picture).

tributions was responsible for failure. Because the sur-
face pores have a higher shape factor, they fracture first
(compare Equations 10 and 11). The relative amount of
critical surface to volume pores is described by the pa-
rameterβ. Thus, if the last term in Equation 16 denotes
the surface distribution,α from the mechanical tests is
equal toβ from the pore size measurements, i.e.α=β.

Fig. 4 shows the typical Weibull plot for the mea-
sured strength values, the upper diagram with a lin-
ear and the lower with a logarithmic scale. A distinct
bimodality of the fracture strength could be observed
from this diagram. The circles represent the measured
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strength values, the dashed line a fit by Equation 15
(multiplicative bimodal Weibull distribution), the solid
line by Equation 16 (additive bimodal Weibull distribu-
tion). For low strength values, the fit results differ, for
high strength values, they coincide. But it can clearly
be seen that the additive equation better describes the
experimental results.

The results from the mechanical tests are now com-
pared to those obtained from measurements of the dis-
tribution of pore sizes. This is performed under the
assumption that the pore dimension perfectly obeys
the power law (Equation 1). From the measurement
of 16000 square millimeters of polished surface of
RSiC, the fit parameters obtained for a scaling pore
sizeasc= 200 microns were

gs(asc) = 4.312× 108 m−3 and rs = 6.694. (17)

Note thatgs is the frequency distribution density of sur-
face cracks (dimension m−3) and not the defect density,
which is obtained by integration over the crack length.
The values for the surface parameters are inserted into
Equation 8 to calculate the volume parameters:

gv(asc) = 4.935× 1012 m−4 and rv = 7.694, (18)

from which mv= 2(rv− 1)= 13.4 can be computed.
With the knowledge of the fracture toughness, 2.05±
0.1 MPa m1/2 , the strength immediately follows from
Equation 2.

The strength values from an unimodal Weibull fit are
shown in the first column of Table I, the ones from
a bimodal fit in the second and the values calculated
from the pore size measurement in the third column of
Table I. The predicted scale parameters correspond per-
fectly to the ones obtained from the mechanical tests.
The Weibull modulus from the pore size measurement
is 13.4, whereas the bimodal fit from mechanical tests
results in 16.1. Monte-Carlo simulations have shown
that the variation coefficient of the modulus is gener-
ally about ten times the one of the scale parameter [42].
For a material perfectly obeying the Weibull distribu-
tion the variation coefficient from 123 mechanical tests
1m/m is nearly 8% [42] and it could be even much
larger for a bimodal material [43]. This should explain
qualitatively the observed higher deviation for the pre-
dicted values for the Weibull modulus. Additionally,
the relative amount of fractures due to surface pores,
the parameterα, was obtained by inserting a critical
length ofac= 484 microns obtained from Equation 13
as lower integration limit into Equation 14 and is close

TABLE I Comparison of bimodal Weibull parameters from the fit of
the strength values and the calculation from pore size distribution

Unimodal Bimodal Calculation from
Parameters Weibull-fit Weibull-fit pore size

σ01 93.6 MPa 92.5 MPa 94.7 MPa
m1=m2 9.8 16.1 13.4
σ02 64.8 MPa 68.2 MPa
α 13.7% 14.7%

to the same parameter obtained by the fit from the me-
chanical tests.

Unfortunately, it is not possible to determine the
relative amount of fractures from surface poresα by
fractography. Fig. 5a,b show binary pictures of two
specimen surfaces before the fracture test, and an addi-
tional gray line depicts, where fracture occurred. Only
in some rare cases (Fig. 5a) a huge pore can be identified
as the fracture origin, but usually one cannot distinguish
between surface or volume fractures (Fig. 5b). Even in
a subsequent fracture analysis the rough surface (due to
the high porosity) and the lack in fracture mirrors and
fracture lines prevents from an unique identification of
fracture origins.

5. Conclusion
The aim of this work was to show that with very simple
assumptions a reasonable value for the strength distri-
bution of a porous ceramic material can be obtained.
Due to this simplifications there exist a lot of possibil-
ities to improve the reliability of the predicted strength
values. The first improvement could be to calculate pre-
cise shape factors, if the geometry is well known. A
second improvement is to take into account the inter-
action of pores and the shielding of the stress field by
neighbouring flaws. Another possibility could be the di-
rect determination of the three-dimensional pore distri-
bution by appropriate censoring techniques, e.g. x-ray
imaging or acoustical microscopy. This would make ob-
solete the simplifying assumption of a sherical shape of
the pores. It was, however, not the goal to find a perfect
solution, which completely describes the fracture be-
haviour, but to show that with some simple estimations
a reasonable result for the fracture strengths could be
obtained from pore size measurements and that more-
over the bimodality of the Weibull distribution found a
simple explanation.

Of course, the experimental verification was per-
formed for recrystallized siliconcarbide as a model ma-
terial. Due to the high porosity of this material and the
good contrast between pores and material it is rela-
tively easy to assemble a sufficiently large number of
pore size data. It should be noted that the required effort
could increase considerably for other ceramics. How-
ever, the method seems to be of great practical interest,
as it offers the possibility to predict the mechanical be-
haviour from non-destructive pore size measurements
during industrial processing. The development of future
new automatic techniques to measure small structures
in three dimensions will offer additional possibilities to
enhance the prediction of the mechanical properties of
materials by non- destructive testing.
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